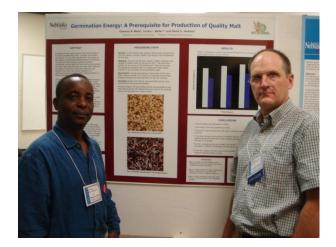
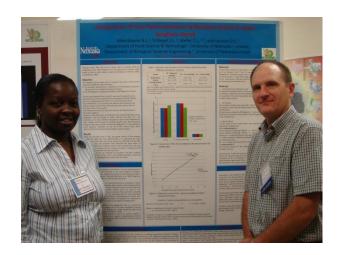
Developing Entrepreneurism: Student Training and Involvement

Curtis L. Weller, Ph.D., P.E. (cweller1@unl.edu) Department of Biological Systems Engineering

Sorghum Food Enterprise and Technology Development in Southern Africa Workshop 6-9 December 2010

Objectives


- Student training is an important component of INTSORMIL UNL-SUA-UNZA project
- Current students and their backgrounds
 - Onesmo Mella is a Researcher with the Tanzania Food and Nutrition Centre in the Ministry of Health and Social Welfare working on his MS degree
 - Nyambe Mkandawire is a Lecturer with the University of Zambia Department of Food Science and Technology working on her PhD degree



Current Projects

- Summary of progress for current projects
 - Effects of malting and fermentation pretreatments on properties of grain sorghum flour and sorghumcontaining products (OM)
 - Starch and fiber digestibility for tannin-containing grain sorghums (NM)
 - Digestibility of pure isolated starches (NM)

Measurement of Starch Digestibility in Starch and Flour from Tannin containing Sorghum

Mkandawire N.L., Weller C.L., Rose D. J., and Jackson D.S.

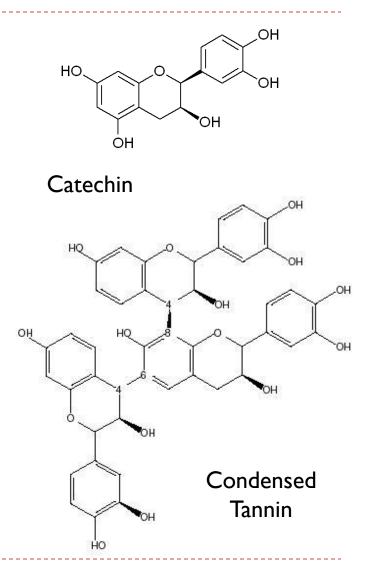
Grain Sorghum

- Sorghum bicolor (L.) Moench
- 5th most important grain
- Important as a feed grain (US) and food (Asia and Africa)
- Low digestibility
- Classified* as
 - Sorghum
 - Tannin Sorghum
 - White sorghum
 - Mixed sorghum

Some sorghums have a pigmented testa

Condensed tannins – present in inner integument

of kernel


Reported levels of condensed tannins in sorghum -

68 mg catechin equivalent (CE) / g

Awika and Rooney, 2004

Condensed Tannins

- Proanthocyanidins, procyanidins (syn.)
- Polymerized flavan-3-ol and or flavan – 3,4 – diol
- C4-C8 and C4-C6 interflavan bonds
- Polymer units
 - Catechin terminal units
 - Epicatechin extension units
- High molecular weights with variable lengths

Importance of CTs

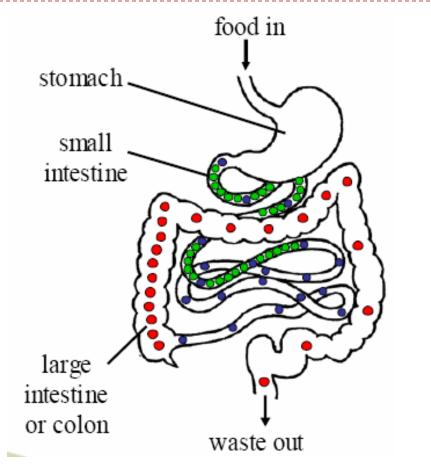
Tannins complex with macromolecules : Proteins,

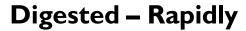
polysaccharides, minerals,

Reduction of digestibility (Proteins and others)

BUT

- Excellent in vitro antioxidant properties
- Low digestibility good for humans


Awika et al, 2003; Dykes and Rooney, 2006;


Relationship of CTs to Polysaccharides

- ► Tannins + Proteins (also enzymes) → reduced protein and starch digestibility
- Some polysaccharides prevent protein tannin interaction →Xanthan, Pectin, gum arabic, carragenaans
- But not carob, guar and tara gums
- ► Tannins reported to complex proteins, carbohydrates / polysaccharides, minerals, alkanoids etc → reduced digestibility

Awika and Rooney, 2004; de Freitas et al, 2003; Carvalho et al, 2006

In vivo digestion

Digested - Slowly

Resistant to digestion

Rate of digestion of Starch in humans

In vitro digestion

- According to Englyst et al, 1992
- Rapidly digested starch (RDS)
 - Amount of glucose released after 20 minutes
- Slowly digestible starch (SDS)
 - Amount of glucose released between 20 and 120 minutes
- Resistant starch
 - Glucose left after 120 minutes
 - RS = Total Starch (RDS + SDS)

Table 1. Resistant starch types, definitions and examples

Resistant Starch Type	Definition	Example
1	Physically inaccessible (e.g., surrounded by plant cell wall material)	Coarsely ground wheat
2	High amylose (long chains, little branching)	High amylose corn starch
3	Retrograded amylose (long chain double helices)	Cooked and cooled potato starch
4	Chemically modified (e.g., heat processing rearrangement of bonding)	Modified maltodextrins

Table 1. Forms of resistant starch. Adapted from Murphy et al. 2008. Resistant starch intakes in the United States. J. Am. Diet. Assoc. 108: 67-78.

Starch digestibility

OBJECTIVE

- To assess the digestibility of starches and flours obtained from tannin containing grain sorghum
 - Correlate [Tannin] to starch digestibility levels of flours and starches

HYPOTHESIS

Condensed tannins will complex with starch and therefore reduce the starch digestibility leading to an increase in SDS and RS and decrease RDS.

Sorghum Samples

- Harvested in the year 2003 and 2004
- 9301 / 9901
- **9303**
- ▶ **9902**
- > 9304 / 9904
- 9305 / 9905
- > 9306 / 9906
- **9308**
- **9907**

- Shanqui Red Ajabsido
- Ajabsido Korro Koll
- Koro Kollo
- IS 8525
 - Sumac
 - SC103 12E
 - Russian Hi starch
 - SC 599

- Red sorghum (PI 597981)
- Macia White sorghum
- Sumac 2008

9902 Tannin

9303Tannin

0

9308 Tannin

Macia

Sumac 2008

9901 Tannin

Red Sorghum

RED SORGHUM

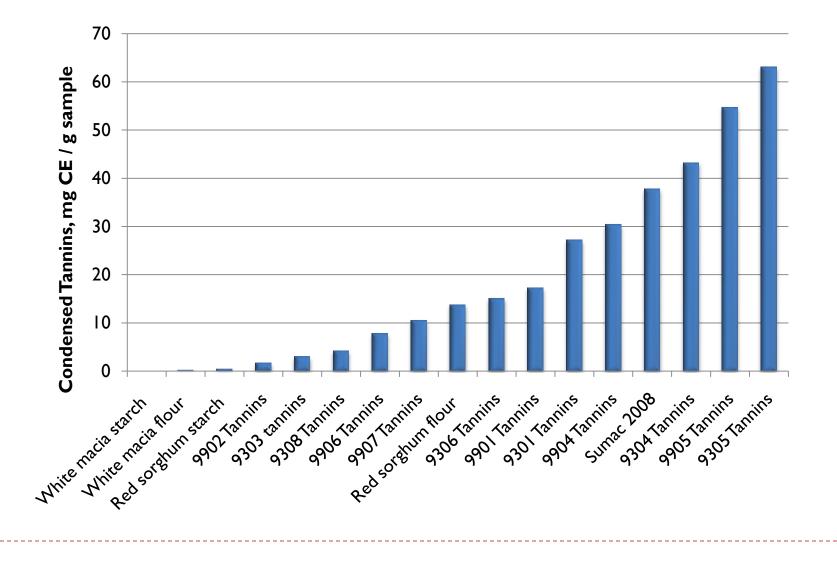
MACIA

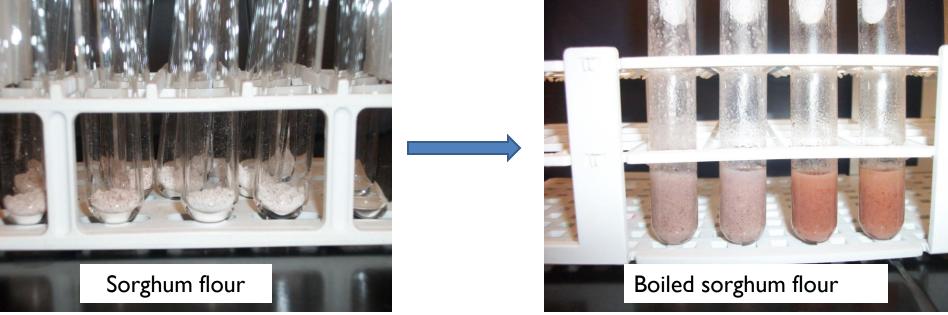
9303 TANNINS

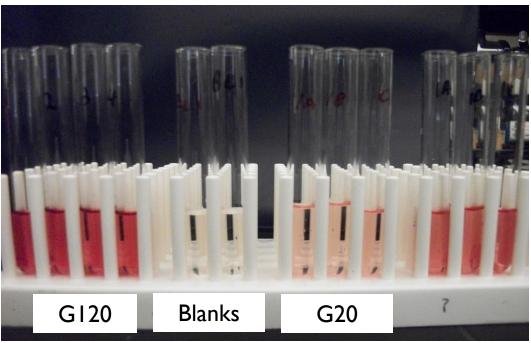
Approaches to Objective 1

Determination of starch digestibility in sorghum flours and their isolated starches

Methods used

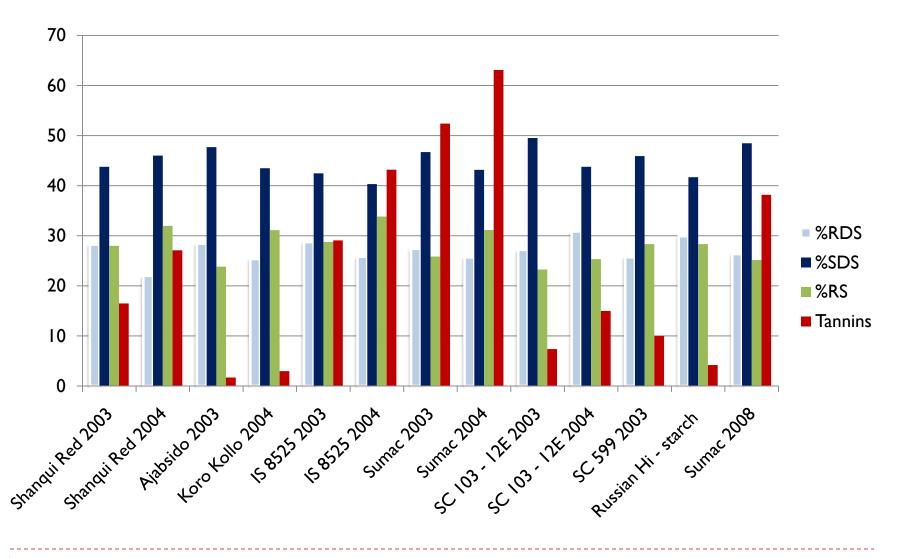

- Modified Englyst method
- Proximate analysis: Moisture, Ash, Total starch,
- Vanillin HCl for quantification of Condensed Tannins (CTs)
- Other tests: Color, Bleach test

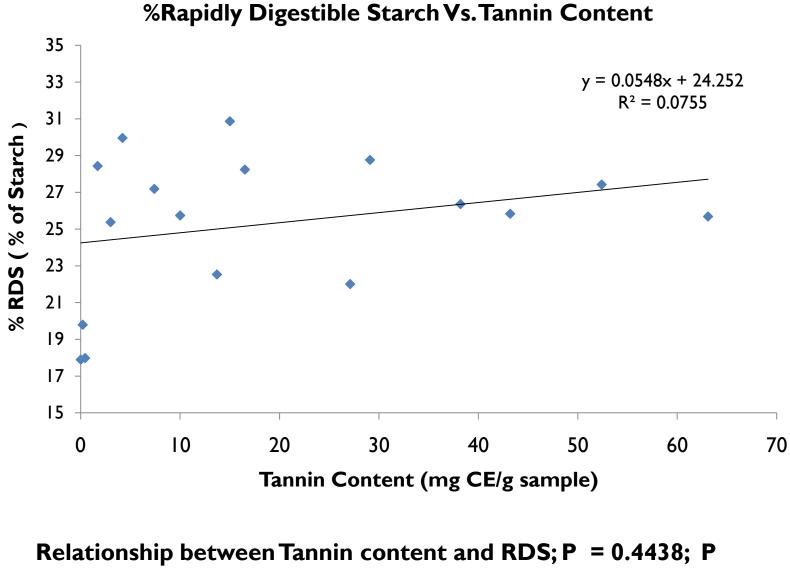

Starch isolation by table method

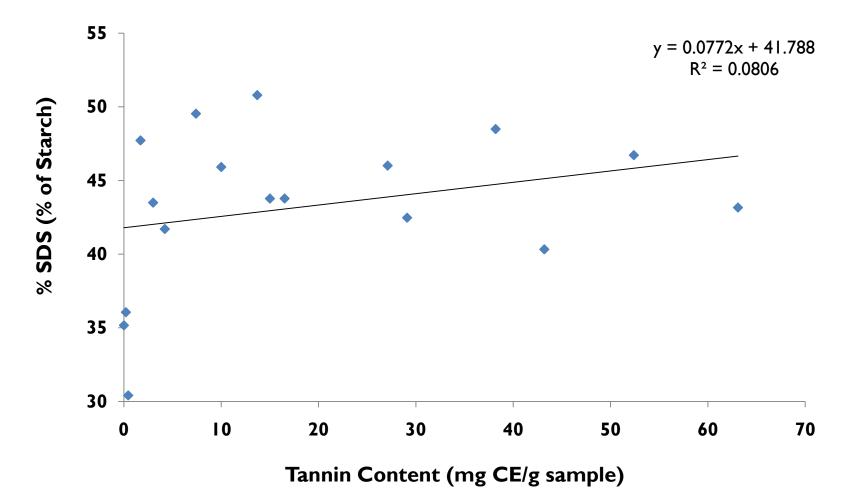

Englyst et al, 1999; Xie and Seib, 2000; Eckhoff et al, 1993; Weller et al, 1988

Relationship of Starch Digestibility and Tannin Contents in Sorghum

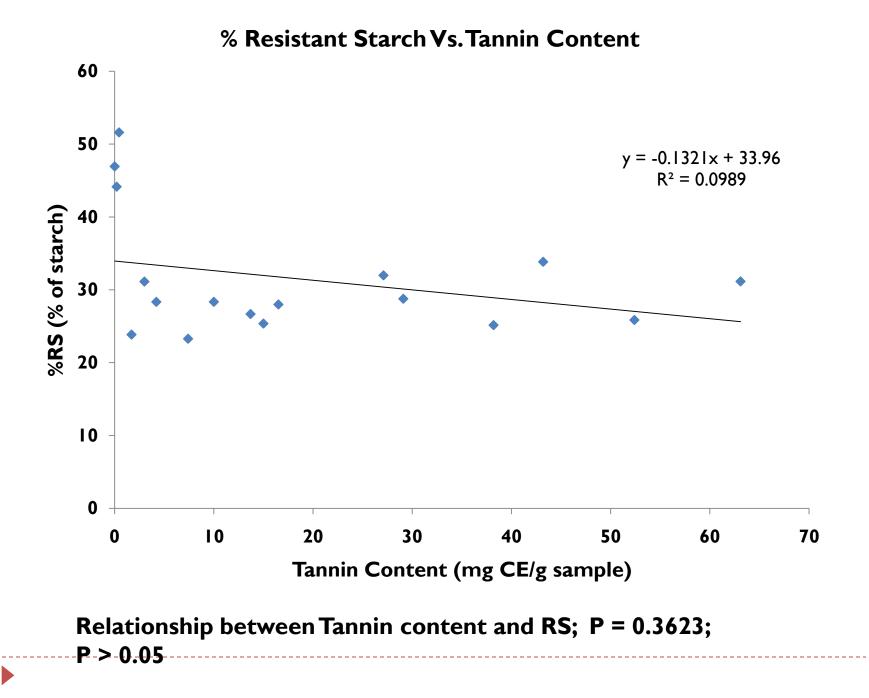
Condensed Tannins in Sorghum starches and flours







Tannin content vs. Starch digestibility

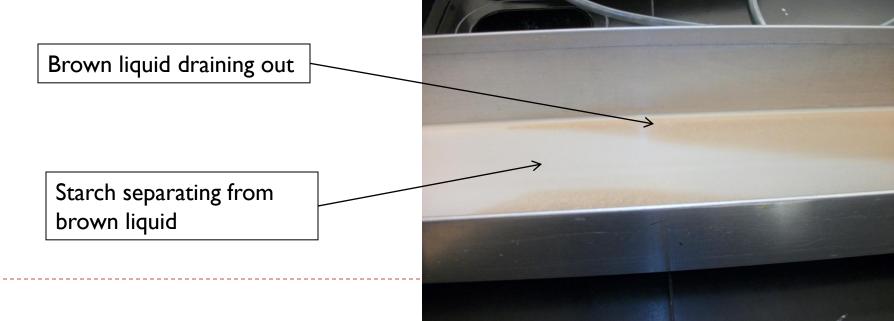


> 0.05

Relationship between Tannin content and SDS; P = 0.4159; P > 0.05

Conclusion

No significant correlation between tannin content and starch digestibility


BUT

- Sorghum containing tannins exhibited low starch digestibility overall
- Grains with low RDS and high SDS and RS are desirable

Digestibility of pure isolated starches

Starch isolation from red sorghum

Starch isolated by wet milling from Sumac grain sorghum

Condensed Tannins isolated from Sumac grain sorghum

Starch Isolation results

Method used – starch table method Sorghum used: Red and Macia Sorghums

Parameter	Macia sorghum	Red Sorghum	
Moisture Content (%)	9.4	9.5	
Ash Content (%)	0.1	0.1	
Color L a b	99.9±0.04 -0.95±0.06 0.73±0.04	97.65±0.18 0.23±0.02 1.72±0.02	
Condensed tannins (mg CE /g sample)	-	0.4	
Total Starch Content (mg sample / g sample)	810.5	825.2	

Levels of digestibility in different cereal starches

Pure Starch	% RDS	% SDS	% RS	Tannin Content (mg CE / g sample)
Red Sorghum**	18.0 ±1.15	30.4 ± 4.79	51.6 ± 4.56	0.44
Macia (white)** Sorghum	17.9 ± 1.09	35.2 ± 5.7	46.9 ± 4.4	-
Normal Maize*	84.7 ± 0.62	8.3 ± 1.85	6.9 ± 1.23	
Waxy Maize*	88.5 ± 3.39	6.6 ± 1.23	4.9 ±2.15	
Rice*	88.0 ±2.16	8.1 ± 4.62	3.9 ±2.46	
Wheat*	81.3 ± 3.70	13.1 ± 2.47	5.6 ± 1.23	
Potato*	83.4 ± 2.46	11.6 ± 4.62	4.9 ±2.15	

*Commercially isolated starch; ** Laboratory Isolated starch (From Zhang et al, 2008)

Physical and Chemical Characteristics

Physical /Chemical characteristics	Macia Sorghum	Red Sorghum	Sumac
Test weight - kg/m ³ (lb/bu)	1400.0 (108.8)	886.8 (67.3)	1386.1(107.7)
True Density g/cm ³	0.86	1.21	0.83
TKW(g)	28.4	40.6	16.9
TADD (% weight removed)	30.8	57.2	27.8
Pigmented testa	Νο	Yes	Yes
Condensed Tannins (mg CE/g sample)	0.2	13.74	37.72
Total Starch of flour (mg starch/g sample)	665.2	620.2	610.0
Ash (%)	1.3	1.51	-

Conclusion

- Sorghum has a potential application in food industry as a low glycemic index starch – Healthy option
- Could be used as starch source in diets of individuals sensitive to wheat gluten
- Ongoing research

Some References

- Awika J.M. and Rooney L.W. (2004).Sorghum phytochemicals and their potential impact on human health. Phytochemistry 65, 1199 – 1221
- Dykes L. and Rooney L.W. (2006). Sorghum and millet phenols and antioxidants. Journal of cereal sciences 44, 236 – 251
- de Freitas V., Carvalho E., Mateus N. (2003). Study of carbohydrate influence on protein-tannin aggregation by nephelometry. Food Chemistry 81, 503 – 509.
- Carvalho E., Povoas M.J., Mateus N., de Freitas V. 2006. Application of flow nephelometry to the analysis of the influence of carbohydrates on protein-tannin interations. Journal of Science of food and Agriculture 86, 891 – 896.

Acknowledgements

- INTSORMIL for Funding
- University of Zambia
- UNL Advisory Committee
 - Dr. Curtis Weller
 - Dr. David Jackson
 - Dr. Devin Rose
 - Dr.Vicki Schlegel
 - Dr. Randy Wehling
 - Dr. Steve Mason
 - Dr. Rolando Flores

SLIDE DESIGN © 2007. BOARD OF REGENTS OF THE UNIVERSITY OF NEBRASKA. ALL RIGHTS RESERVED.